EM_CUDA

This is a GPU implementation of the Expectation-Maximization (EM) algorithm for 2D data sets. It takes projection data and an initial reconstruction as input, and returns the reconstruction after a specified number of iterations.

Supported geometries: parallel, parallel_vec, fanflat, fanflat_vec.

Configuration options

name

type

description

cfg.ProjectionDataId

required

The astra_mex_data2d ID of the projection data

cfg.ReconstructionDataId

required

The astra_mex_data2d ID of the reconstruction data. The content of this when starting SIRT is used as the initial reconstruction.

cfg.option.GPUindex

optional

Specifies which GPU to use. Default = 0.

cfg.option.DetectorSuperSampling

optional

Specifies the amount of detector supersampling, i.e. how many rays are cast per detector.

cfg.option.PixelSuperSampling

optional

Specifies the amount of pixel supersampling, i.e. how many (one dimension) subpixels are generated from a single parent pixel.

Example

import astra
import matplotlib.pyplot as plt
import numpy

# create geometries and projector
proj_geom = astra.create_proj_geom('parallel', 1.0, 256, numpy.linspace(0, numpy.pi, 180, endpoint=False))
vol_geom = astra.create_vol_geom(256,256)
proj_id = astra.create_projector('cuda', proj_geom, vol_geom)

# generate phantom image
V_exact_id, V_exact = astra.data2d.shepp_logan(vol_geom)

# create forward projection
sinogram_id, sinogram = astra.create_sino(V_exact, proj_id)

# reconstruct
# initialize with ones to allow for multiplicative updates
recon_id = astra.data2d.create('-vol', vol_geom, 1.0)
cfg = astra.astra_dict('EM_CUDA')
cfg['ProjectorId'] = proj_id
cfg['ProjectionDataId'] = sinogram_id
cfg['ReconstructionDataId'] = recon_id
em_id = astra.algorithm.create(cfg)
astra.algorithm.run(em_id, 15)
V = astra.data2d.get(recon_id)
plt.gray()
plt.imshow(V)
plt.show()

# garbage disposal
astra.data2d.delete([sinogram_id, recon_id, V_exact_id])
astra.projector.delete(proj_id)
astra.algorithm.delete(em_id)

Extra features

EM_CUDA supports astra.algorithm.get_res_norm() / astra_mex_algorithm(‘get_res_norm’) to get the 2-norm of the difference between the projection data and the projection of the reconstruction. (The square root of the sum of squares of differences.)