SIRT ==== This is a CPU implementation of the Simultaneous Iterative Reconstruction Technique (SIRT) for 2D data sets. It takes projection data and an initial reconstruction as input, and returns the reconstruction after a specified number of SIRT iterations. Supported geometries: parallel, parallel_vec, fanflat, fanflat_vec, matrix. Configuration options --------------------- .. list-table:: :header-rows: 1 * - Name - Description * - ProjectorId - `Projector object ID <../proj2d.html>`_. * - ProjectionDataId - `Projection data object ID <../concepts.html#data>`_. * - ReconstructionDataId - `ID of data object <../concepts.html#data>`_ to store the result. The content of this data is used as the initial reconstruction. * - *option.MinConstraint* - If specified, all values below MinConstraint will be set to MinConstraint. This can, for example, be used to enforce non-negative reconstructions. * - *option.MaxConstraint* - If specified, all values above MaxConstraint will be set to MaxConstraint. * - *option.SinogramMaskId* - If specified, `data object ID <../concepts.html#data>`_ of a projection-data-sized volume to be used as a `mask <../misc.html#masks>`_. * - *option.ReconstructionMaskId* - If specified, `data object ID <../concepts.html#data>`_ of a volume-data-sized volume to be used as a `mask <../misc.html#masks>`_. Example ------- .. tabs:: .. group-tab:: Python .. code-block:: python import astra import matplotlib.pyplot as plt import numpy as np # Create geometries and projector N = 256 N_ANGLES = 180 det_spacing = 1.0 angles = np.linspace(0, np.pi, N_ANGLES) proj_geom = astra.create_proj_geom('parallel', det_spacing, N, angles) vol_geom = astra.create_vol_geom(N, N) projector_id = astra.create_projector('linear', proj_geom, vol_geom) # Generate phantom image phantom_id, phantom = astra.data2d.shepp_logan(vol_geom) # Create forward projection sinogram_id, sinogram = astra.create_sino(phantom_id, projector_id) # Reconstruct recon_id = astra.data2d.create('-vol', vol_geom) cfg = astra.astra_dict('SIRT') cfg['ProjectorId'] = projector_id cfg['ProjectionDataId'] = sinogram_id cfg['ReconstructionDataId'] = recon_id cfg['option'] = {'MinConstraint': 0.0} algorithm_id = astra.algorithm.create(cfg) astra.algorithm.run(algorithm_id, iterations=100) reconstruction = astra.data2d.get(recon_id) plt.imshow(reconstruction, cmap='gray') # Clean up astra.data2d.delete([sinogram_id, recon_id, phantom_id]) astra.projector.delete(projector_id) astra.algorithm.delete(algorithm_id) .. group-tab:: MATLAB .. code-block:: matlab %% Create phantom N = 256; phantom = phantom(N); %% Create geometries and projector det_spacing = 1.0; N_ANGLES = 180; angles = linspace(0, pi, N_ANGLES); proj_geom = astra_create_proj_geom('parallel', det_spacing, N, angles); vol_geom = astra_create_vol_geom(N, N); projector_id = astra_create_projector('linear', proj_geom, vol_geom); %% Create forward projection [sinogram_id, sinogram] = astra_create_sino(phantom, projector_id); %% Reconstruct recon_id = astra_mex_data2d('create', '-vol', vol_geom); cfg = astra_struct('SIRT'); cfg.ProjectorId = projector_id; cfg.ProjectionDataId = sinogram_id; cfg.ReconstructionDataId = recon_id; cfg.option.MinConstraint = 0.0; algorithm_id = astra_mex_algorithm('create', cfg); astra_mex_algorithm('iterate', algorithm_id, 100); reconstruction = astra_mex_data2d('get', recon_id); imshow(reconstruction, []); %% Clean up astra_mex_data2d('delete', sinogram_id, recon_id); astra_mex_projector('delete', projector_id); astra_mex_algorithm('delete', algorithm_id);